数理金融与精算科学系 您当前位置:首页  师资力量  数理金融与精算科学系
李津竹
pictureEmail:lijinzhu@nankai.edu.cn
办公电话:
传真:
个人网站:http://my.nankai.edu.cn/sms/ljz/list.htm
研究方向:
主要从事随机过程及其在金融保险中应用方面的研究
社会兼职:
发表文章及著作:

(1).Li, J. Asymptotics in a time-dependent renewal risk model with stochastic return. J. Math. Anal. Appl. 387 (2012), 1009--1023.

(2).Li, J.; Wu, R. Asymptotic ruin probabilities of the renewal model with constant interest force and dependent heavy-tailed claims. Acta Math. Appl. Sin. Engl. Ser. 27 (2011), no. 2, 329--338.

(3).Li, J.; Wu, R. Upper bound for finite-time ruin probability in a Markov modulated market. J. Syst. Sci. Complex. 24 (2011), 308--316.

(4).Li, J.; Tang, Q.; Wu, R. Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv. in Appl. Probab. 42 (2010), no. 4, 1126--1146.

(5).Li, J.; Tang, Q. A note on max-sum equivalence. Statist. Probab. Lett. 80 (2010), 1720--1723.

(6).Li, J.; Wu, R. Optimal investment problem with stochastic interest rate and stochastic volatility: maximizing a power utility. Appl. Stoch. Models Bus. Ind. 25 (2009), no. 3, 407--420.

(7).Li, J.; Wu, R. Upper Bounds for Ruin Probabilities under Stochastic Interest Rateand Optimal Investment Strategies. Acta Math. Sin. Engl. Ser. (2012), to appear.

(8).Li, J.; Tang, Q. Interplay of Insurance Risk and Financial Risk in a Discrete-time Model with Regular Variation. Working paper. 2012.

(9).Li, J.; Hashorva, E.; Ji, L. Efficient estimators for the sum of log-Dirichlet risks. Working paper. 2012

(10).Li, J.; Hashorva, E. Second order asymptotics of random maxima and sum. Working paper. 2012.

南开大学 | 陈省身数学研究所 | 组合数学中心| 统计与数据科学学院
版权所有 皇冠电子游戏(crown)注册总网 | 地址:天津市卫津路94号 | 邮编:300071
Baidu
sogou